Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94.808
Filtrar
1.
Sci Rep ; 14(1): 8388, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600177

RESUMEN

MicroRNAs (miRNAs) may play a crucial regulatory role in the process of muscle atrophy induced by high-altitude hypoxia and its amelioration through resistance training. However, research in this aspect is still lacking. Therefore, this study aimed to employ miRNA microarray analysis to investigate the expression profile of miRNAs in skeletal muscle from an animal model of hypoxia-induced muscle atrophy and resistance training aimed at mitigating muscle atrophy. The study utilized a simulated hypoxic environment (oxygen concentration at 11.2%) to induce muscle atrophy and established a rat model of resistance training using ladder climbing, with a total intervention period of 4 weeks. The miRNA expression profile revealed 9 differentially expressed miRNAs influenced by hypoxia (e.g., miR-341, miR-32-5p, miR-465-5p) and 14 differentially expressed miRNAs influenced by resistance training under hypoxic conditions (e.g., miR-338-5p, miR-203a-3p, miR-92b-3p) (∣log2(FC)∣ ≥ 1.5, p < 0.05). The differentially expressed miRNAs were found to target genes involved in muscle protein synthesis and degradation (such as Utrn, mdm2, eIF4E), biological processes (such as negative regulation of transcription from RNA polymerase II promoter, regulation of transcription, DNA-dependent), and signaling pathways (such as Wnt signaling pathway, MAPK signaling pathway, ubiquitin-mediated proteolysis, mTOR signaling pathway). This study provides a foundation for understanding and further exploring the molecular mechanisms underlying hypoxia-induced rats muscle atrophy and the mitigation of atrophy through resistance training.


Asunto(s)
MicroARNs , Entrenamiento de Fuerza , Humanos , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Perfilación de la Expresión Génica
2.
Cell Mol Biol Lett ; 29(1): 51, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600465

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) play essential roles in the tumorigenesis of gastric cancer. However, the influence of lncRNA methylation on gastric cancer stem cells (GCSCs) remains unclear. METHODS: The N6-methyladenosine (m6A) levels of lncRNAs in gastric cancer stem cells were detected by methylated RNA immunoprecipitation sequencing (MeRIP-seq), and the results were validated by MeRIP-quantitative polymerase chain reaction (qPCR). Specific sites of m6A modification on lncRNAs were detected by single-base elongation- and ligation-based qPCR amplification (SELECT). By constructing and transfecting the plasmid expressing methyltransferase-like 3 (METTL3) fused with catalytically inactivated Cas13 (dCas13b) and guide RNA targeting specific methylation sites of lncRNAs, we obtained gastric cancer stem cells with site-specific methylation of lncRNAs. Reverse transcription (RT)-qPCR and Western blot were used for detecting the stemness of treated gastric cancer stem cells. RESULTS: The site-specific methylation of PSMA3-AS1 and MIR22HG suppressed apoptosis and promoted stemness of GCSCs. LncRNA methylation enhanced the stability of PSMA3-AS1 and MIR22HG to suppress apoptosis of GCSCs via the PSMA3-AS1-miR-411-3p- or MIR22HG-miR-24-3p-SERTAD1 axis. Simultaneously, the methylated lncRNAs promoted the interaction between PSMA3-AS1 and the EEF1A1 protein or MIR22HG and the LRPPRC protein, stabilizing the proteins and leading to the suppression of apoptosis. The in vivo data revealed that the methylated PSMA3-AS1 and MIR22HG triggered tumorigenesis of GCSCs. CONCLUSIONS: Our study revealed the requirement for site-specific methylation of lncRNAs in the tumorigenesis of GCSCs, contributing novel insights into cancer development.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , ARN Guía de Sistemas CRISPR-Cas , Carcinogénesis/genética , Apoptosis/genética , Células Madre Neoplásicas/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/genética
3.
Methods Mol Biol ; 2788: 157-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656513

RESUMEN

This chapter presents a comprehensive approach to predict novel miRNAs encoded by plant viruses and identify their target plant genes, through integration of various ab initio computational approaches. The predictive process begins with the analysis of plant viral sequences using the VMir Analyzer software. VMir Viewer software is then used to extract primary hairpins from these sequences. To distinguish real miRNA precursors from pseudo miRNA precursors, MiPred web-based software is employed. Verified real pre-miRNA sequences with a minimum free energy of < -20 Kcal/mol, are further analyzed using the RNAshapes software. Validation of predictions involves comparing them with available Expressed Sequence Tags (ESTs) from the relevant plant using BlastN. Short sequences with lengths ranging from 19 to 25 nucleotides and exhibiting <5 mismatches are prioritized for miRNA prediction. The precise locations of these short sequences within pre-miRNA structures generated using RNAshapes are meticulously identified, with a focus on those situated on the 5' and 3' arms of the structures, indicating potential miRNAs. Sequences within the arms of pre-miRNA structures are used to predict target sites within the ESTs of the specific plant, facilitated by psRNA Target software, revealing genes with potential regulatory roles in the plant. To confirm the outcome of target prediction, results are individually submitted to the RNAhybrid web-based software. For practical demonstration, this approach is applied to analyze African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) viruses, as well as the ESTs of Jatropha and cassava.


Asunto(s)
Biología Computacional , MicroARNs , Virus de Plantas , ARN Viral , Programas Informáticos , MicroARNs/genética , Virus de Plantas/genética , Biología Computacional/métodos , ARN Viral/genética , Genes de Plantas , Conformación de Ácido Nucleico , Plantas/virología , Plantas/genética , Etiquetas de Secuencia Expresada
4.
Genes Chromosomes Cancer ; 63(4): e23239, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656544

RESUMEN

Myxoid leiomyosarcoma (MLS) is a rare but well-documented tumor that often portends a poor prognosis compared to the conventional leiomyosarcoma. This rare sarcoma has been reported in the uterus, external female genitalia, soft tissue, and other locations. However, a definite rectal MLS has not been reported. Recently five cases of MLS were reported to harbor PLAG1 fusions (TRPS1::PLAG1, RAD51B::PLAG1, and TRIM13::PLAG1). In this report, we present a case of rectal MLS with a novel MIR143HG::PLAG1 fusion detected by RNA next-generation sequencing.


Asunto(s)
Proteínas de Unión al ADN , Leiomiosarcoma , Neoplasias del Recto , Humanos , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Proteínas de Unión al ADN/genética , Femenino , MicroARNs/genética , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética
5.
Sci Rep ; 14(1): 9540, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664447

RESUMEN

Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.


Asunto(s)
Apigenina , Apoptosis , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Mama Triple Negativas , Vorinostat , Apigenina/farmacología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis/efectos de los fármacos , Vorinostat/farmacología , Epigénesis Genética/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Movimiento Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos
6.
J Cardiothorac Surg ; 19(1): 265, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664788

RESUMEN

BACKGROUND: Hypoxia/reoxygenation (H/R) induces cardiomyocyte ferroptosis, a core remodeling event in myocardial ischemia/reperfusion injury. Methyltransferase-like 14 (METTL14) emerges as a writer of N6-methyladenosine (m6A) modification. This study was conducted to decipher the role of METTL14 in H/R-induced cardiomyocyte ferroptosis. METHODS: Mouse cardiomyocytes HL-1 were cultured and underwent H/R treatment. The degree of ferroptosis after H/R treatment was appraised by the cell counting kit-8 assay, assay kits (ROS/GSH/Fe2+), and Western blotting (GPX4/ACSL4). The intracellular expressions of METTL14, pri-miR-146a-5p, miR-146a-5p, or adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) were examined by real-time quantitative polymerase chain reaction or Western blotting, with m6A quantification analysis and RNA immunoprecipitation to determine the total m6A level and the expression of pri-miR-146a-5p bound to DiGeorge critical region 8 (DGCR8) and m6A-modified pri-miR-146a-5p. The binding of miR-146a-5p to APPL1 was testified by the dual-luciferase assay. RESULTS: H/R treatment induced cardiomyocyte ferroptosis (increased ROS, Fe2+, and ACSL4 and decreased GSH and GPX4) and upregulated METTL14 expression. METTL14 knockdown attenuated H/R-induced cardiomyocyte ferroptosis. METTL14 induced the recognition of pri-miR-146a-5p by DGCR8 by increasing m6A modification on pri-miR-146a-5p, which promoted the conversion of pri-miR-146a-5p into miR-146a-5p and further repressed APPL1 transcription. miR-146a-5p upregulation or APPL1 downregulation limited the inhibitory effect of METTL14 downregulation on H/R-induced cardiomyocyte ferroptosis. CONCLUSION: METTL14 promoted miR-146a-5p expression through the recognition and processing of pri-miR-146a-5p by DGCR8, which repressed APPL1 transcription and triggered H/R-induced cardiomyocyte ferroptosis.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Ferroptosis , Metiltransferasas , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Ferroptosis/fisiología , Ferroptosis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Adenosina/metabolismo , Ratones , Metiltransferasas/metabolismo , Metiltransferasas/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , MicroARNs/genética , MicroARNs/metabolismo
7.
BMC Infect Dis ; 24(1): 402, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622570

RESUMEN

BACKGROUND: Tuberculosis (TB) ranks as the second leading cause of death globally among all infectious diseases. This problem is likely due to the lack of biomarkers to differentiate the heterogeneous spectrum of infection. Therefore, the first step in solving this problem is to identify biomarkers to distinguish the different disease states of an individual and treat them accordingly. Circulating microRNA (miRNA) biomarkers are promising candidates for various diseases. In fact, we are yet to conceptualize how miRNA expression influences and predicts TB disease outcomes. Thus, this systematic review and meta-analysis aimed to assess the diagnostic efficacy of circulating miRNAs in Latent TB (LTB) and Active Pulmonary TB (PTB). METHODS: Literature published between 2012 and 2021 was retrieved from PubMed, Web of Science, Cochrane, Scopus, Embase, and Google Scholar. Articles were screened based on inclusion and exclusion criteria, and their quality was assessed using the QUADAS-2 tool. Funnel plots and forest plots were generated to assess the likelihood of study bias and heterogeneity, respectively. RESULTS: After the screening process, seven articles were selected for qualitative analysis. The study groups, which consisted of Healthy Control (HC) vs. TB and LTB vs. TB, exhibited an overall sensitivity of 81.9% (95% CI: 74.2, 87.7) and specificity of 68.3% (95% CI: 57.8, 77.2), respectively. However, our meta-analysis results highlighted two potentially valuable miRNA candidates, miR-197 and miR-144, for discriminating TB from HC. The miRNA signature model (miR197-3p, miR-let-7e-5p, and miR-223-3p) has also been shown to diagnose DR-TB with a sensitivity of 100%, but with a compromised specificity of only 75%. CONCLUSION: miRNA biomarkers show a promising future for TB diagnostics. Further multicentre studies without biases are required to identify clinically valid biomarkers for different states of the TB disease spectrum. SYSTEMATIC REVIEW REGISTRATION: PROSPERO (CRD42022302729).


Asunto(s)
Tuberculosis Latente , MicroARNs , Tuberculosis Pulmonar , Tuberculosis , Humanos , MicroARNs/genética , Tuberculosis/diagnóstico , Tuberculosis Pulmonar/diagnóstico , Biomarcadores
8.
Clin Epigenetics ; 16(1): 55, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622665

RESUMEN

BACKGROUND: CSLCs(Cancer stem cell-like cells), which are central to tumorigenesis, are intrinsically influenced by epigenetic modifications. This study aimed to elucidate the underlying mechanism involving the DNMT1/miR-152-3p/SOS1 axis in regulating the self-renewal and tumor growth of LCSLCs (lung cancer stem-like cells). MATERIALS AND METHODS: Target genes of miR-152-3p were predicted using TargetScan Human 8.0. Self-renewal and tumor growth of LCSLC were compared in suspension-cultured non-small cell lung cancer (NSCLC) cell lines H460 and A549 cell-derived globe cells. Functional effects of the DNMT1/miR-152-3p/SOS1 axis were assessed through gain-of-function experiments in vitro and in vivo. Additionally, luciferase reporter assays were employed to analyze the interaction among DNMT1, miR-152-3p, and SOS1. RESULTS: Our findings highlight a negative interaction between DNMT1 and miR-152-3p, resulting in reduced miR-152-3p level. This, in turn, leads to the alleviation of the inhibitory effect of miR-152-3p on the target gene SOS1, ultimately activating SOS1 and playing an essential role in self-renewal and tumor growth of LCSLC. However, the alteration of SOS1 does not affect DNMT1/miR-152-3p regulation. Therefore, it is reasonable to infer that the DNMT1/miR-152-3p negative feedback loop critically sustains self-renewal and tumor growth of LCSLC through SOS1. CONCLUSIONS: This study reveals a novel mechanism underpinning self-renewal and tumor growth of CSLC (cancer stem cell) in NSCLC and identifies potential therapeutic targets for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular , Proliferación Celular , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral
9.
J Orthop Surg Res ; 19(1): 241, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622668

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) play an important role in osteoarthritis (OA). However, the role of circRNA in OA is still unclear. Here, we explored the role and mechanism of circ_0044235 in OA. METHODS: CHON-001 cells were treated with IL-1ß to establish OA model in vitro. The levels of circ_0044235, miR-375 and phosphoinositide 3-kinase (PI3K) regulatory subunit 3 (PIK3R3) were detected by quantitative real-time PCR. Cell count kit-8 assay and flow cytometry assay were used to detect cell viability and apoptosis. The concentrations of inflammation factors were determined by enzyme-linked immunosorbent assay. Western blot was used to detect protein levels. The interaction between miR-375 and circ_0044235 or PIK3R3 was analyzed by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS: Circ_0044235 was significantly decreased in OA cartilage tissue and IL-1ß-treated CHON-001 cells. Overexpression of circ_0044235 promoted IL-1ß-stimulated CHON-001 cell viability and inhibited apoptosis, inflammation, and extracellular matrix (ECM) degradation. In mechanism analysis, circ_0044235 could act as a sponge for miR-375 and positively regulate PIK3R3 expression. In addition, miR-375 ameliorated the effect of circ_0044235 overexpression on IL-1ß-mediated CHON-001 cells injury. In addition, miR-375 inhibition mitigated IL-1ß-induced CHON-001 cell injury, while PIK3R3 silencing restored the effect. CONCLUSION: Circ_0044235 knockdown alleviated IL-1ß-induced chondrocytes injury by regulating miR-375/PIK3R3 axis, confirming that circ_0044235 might be a potential target for OA treatment.


Asunto(s)
MicroARNs , Osteoartritis , Humanos , Fosfatidilinositol 3-Quinasas/genética , Osteoartritis/genética , Inflamación , Apoptosis/genética , Condrocitos , Interleucina-1beta/genética , MicroARNs/genética
10.
Sci Rep ; 14(1): 9016, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641707

RESUMEN

RNA modifications affect fundamental biological processes and diseases and are a research hotspot. Several micro-RNAs (miRNAs) exhibit genetic variant-targeted RNA modifications that can greatly alter their biofunctions and influence their effect on cancer. Therefore, the potential role of these miRNAs in cancer can be implicated in new prevention and treatment strategies. In this study, we determined whether RMvar-related miRNAs were closely associated with tumorigenesis and identified cancer-specific signatures based on these miRNAs with variants targeting RNA modifications using an optimized machine learning workflow. An effective machine learning workflow, combining least absolute shrinkage and selection operator analyses, recursive feature elimination, and nine types of machine learning algorithms, was used to screen candidate miRNAs from 504 serum RMvar-related miRNAs and construct a diagnostic signature for cancer detection based on 43,047 clinical samples (with an area under the curve value of 0.998, specificity of 93.1%, and sensitivity of 99.3% in the validation cohort). This signature demonstrated a satisfactory diagnostic performance for certain cancers and different conditions, including distinguishing early-stage tumors. Our study revealed the close relationship between RMvar-related miRNAs and tumors and proposed an effective cancer screening tool.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Flujo de Trabajo , Aprendizaje Automático , Neoplasias/diagnóstico , Neoplasias/genética , Mutación
11.
BMC Bioinformatics ; 25(1): 159, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643080

RESUMEN

BACKGROUND: MicroRNAs play a critical role in regulating gene expression by binding to specific target sites within gene transcripts, making the identification of microRNA targets a prominent focus of research. Conventional experimental methods for identifying microRNA targets are both time-consuming and expensive, prompting the development of computational tools for target prediction. However, the existing computational tools exhibit limited performance in meeting the demands of practical applications, highlighting the need to improve the performance of microRNA target prediction models. RESULTS: In this paper, we utilize the most popular natural language processing and computer vision technologies to propose a novel approach, called TEC-miTarget, for microRNA target prediction based on transformer encoder and convolutional neural networks. TEC-miTarget treats RNA sequences as a natural language and encodes them using a transformer encoder, a widely used encoder in natural language processing. It then combines the representations of a pair of microRNA and its candidate target site sequences into a contact map, which is a three-dimensional array similar to a multi-channel image. Therefore, the contact map's features are extracted using a four-layer convolutional neural network, enabling the prediction of interactions between microRNA and its candidate target sites. We applied a series of comparative experiments to demonstrate that TEC-miTarget significantly improves microRNA target prediction, compared with existing state-of-the-art models. Our approach is the first approach to perform comparisons with other approaches at both sequence and transcript levels. Furthermore, it is the first approach compared with both deep learning-based and seed-match-based methods. We first compared TEC-miTarget's performance with approaches at the sequence level, and our approach delivers substantial improvements in performance using the same datasets and evaluation metrics. Moreover, we utilized TEC-miTarget to predict microRNA targets in long mRNA sequences, which involves two steps: selecting candidate target site sequences and applying sequence-level predictions. We finally showed that TEC-miTarget outperforms other approaches at the transcript level, including the popular seed match methods widely used in previous years. CONCLUSIONS: We propose a novel approach for predicting microRNA targets at both sequence and transcript levels, and demonstrate that our approach outperforms other methods based on deep learning or seed match. We also provide our approach as an easy-to-use software, TEC-miTarget, at https://github.com/tingpeng17/TEC-miTarget . Our results provide new perspectives for microRNA target prediction.


Asunto(s)
Aprendizaje Profundo , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Redes Neurales de la Computación , Programas Informáticos , ARN Mensajero/genética
12.
Cell Mol Biol Lett ; 29(1): 56, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643083

RESUMEN

During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.


Asunto(s)
Cuernos de Venado , MicroARNs , Animales , Humanos , Condrogénesis/genética , Retroalimentación , Cartílago/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
13.
Cell Mol Biol Lett ; 29(1): 55, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643118

RESUMEN

BACKGROUND: Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS: We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS: Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS: Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.


Asunto(s)
MicroARNs , Miocarditis , Ratones , Animales , Miocarditis/genética , Miocarditis/metabolismo , Miocitos Cardíacos/metabolismo , Piroptosis , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/metabolismo , Antagomirs/metabolismo
14.
BMC Vet Res ; 20(1): 150, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643124

RESUMEN

BACKGROUND: Buffaloes have the highest potential for production due to a promising gene pool that is being enhanced and upgraded. Mastitis is a significant health impediment that greatly diminishes milk yield and quality, affecting rural farmers' livelihoods. The traditional gold standard used for diagnosing mastitis or subclinical mastitis is CMT, but it has the drawback of false positive or negative results. Subclinical mastitis, if not treated promptly, can lead to mammary tumors. To address the gap in early diagnosis of subclinical mastitis in CMT-negative milk of buffaloes, we performed a retrospective analysis and evaluated the milk miRNA expression profiles as potential biomarkers. RESULTS: Thirty buffalo milk samples based on clinical signs and CMT were divided into normal, subclinical, and clinical mastitis. SCC evaluation showed significant differences between the groups. The data analysis demonstrated that the elevation of miR-146a and miR-383 differed substantially between normal, subclinical, and clinical mastitis milk of buffaloes with 100% sensitivity and specificity. The relationship of SCC with miR-146a and miR-383 in normal/healthy and subclinical mastitis was positively correlated. CONCLUSION: The overexpression of miR-146a and miR-383 is associated with inflammation. It can be a valuable prognostic and most sensitive biomarker for early mastitis detection in buffaloes with SCC below 2 lakhs and CMT-ve, enhancing the accuracy of subclinical mastitis diagnosis.


Asunto(s)
Bison , Enfermedades de los Bovinos , Mastitis Bovina , MicroARNs , Bovinos , Animales , Femenino , Leche/metabolismo , Búfalos , MicroARNs/genética , Estudios Retrospectivos , Mastitis Bovina/diagnóstico , Mastitis Bovina/metabolismo , Biomarcadores
15.
Eur J Med Res ; 29(1): 244, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643140

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. Catheter ablation has become a crucial treatment for AF. However, there is a possibility of atrial fibrillation recurrence after catheter ablation. Our study sought to elucidate the role of lncRNA‒mRNA regulatory networks in late AF recurrence after catheter ablation. METHODS: We conducted RNA sequencing to profile the transcriptomes of 5 samples from the presence of recurrence after AF ablation (P-RAF) and 5 samples from the absence of recurrence after AF ablation (A-RAF). Differentially expressed genes (DEGs) and long noncoding RNAs (DE-lncRNAs) were analyzed using the DESeq2 R package. The functional correlations of the DEGs were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein‒protein interaction (PPI) network was constructed using STRING and Cytoscape. We also established a lncRNA‒mRNA regulatory network between DE-lncRNAs and DEGs using BEDTools v2.1.2 software and the Pearson correlation coefficient method. To validate the high-throughput sequencing results of the hub genes, we conducted quantitative real-time polymerase chain reaction (qRT‒PCR) experiments. RESULTS: A total of 28,528 mRNAs and 42,333 lncRNAs were detected. A total of 96 DEGs and 203 DE-lncRNAs were identified between the two groups. GO analysis revealed that the DEGs were enriched in the biological processes (BPs) of "regulation of immune response" and "regulation of immune system process", the cellular components (CCs) of "extracellular matrix" and "cell‒cell junction", and the molecular functions (MFs) of "signaling adaptor activity" and "protein-macromolecule adaptor activity". According to the KEGG analysis, the DEGs were associated with the "PI3K-Akt signaling pathway" and "MAPK signaling pathway." Nine hub genes (MMP9, IGF2, FGFR1, HSPG2, GZMB, PEG10, GNLY, COL6A1, and KCNE3) were identified through the PPI network. lncRNA-TMEM51-AS1-201 was identified as a core regulator in the lncRNA‒mRNA regulatory network, suggesting its potential impact on the recurrence of AF after catheter ablation through the regulation of COL6A1, FGFR1, HSPG2, and IGF2. CONCLUSIONS: The recurrence of atrial fibrillation after catheter ablation may be associated with immune responses and fibrosis, with the extracellular matrix playing a crucial role. TMEM51-AS1-201 has been identified as a potential key target for AF recurrence after catheter ablation.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Redes Reguladoras de Genes , Fibrilación Atrial/genética , Fibrilación Atrial/cirugía , ARN Mensajero/genética , Fosfatidilinositol 3-Quinasas , MicroARNs/genética
16.
J Nanobiotechnology ; 22(1): 195, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643173

RESUMEN

Doxorubicin (DOX) is a chemotherapeutic agent widely used for tumor treatment. Nonetheless its clinical application is heavily limited by its cardiotoxicity. There is accumulated evidence that transplantation of mesenchymal stem cell-derived exosomes (MSC-EXOs) can protect against Dox-induced cardiomyopathy (DIC). This study aimed to examine the cardioprotective effects of EXOs isolated from human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) against DIC and explore the potential mechanisms. EXOs were isolated from the cultural supernatant of human BM-MSCs (BM-MSC-EXOs) and iPSC-MSCs (iPSC-MSC-EXOs) by ultracentrifugation. A mouse model of DIC was induced by intraperitoneal injection of Dox followed by tail vein injection of PBS, BM-MSC-EXOs, or iPSC-MSC-EXOs. Cardiac function, cardiomyocyte senescence and mitochondrial dynamics in each group were assessed. In vitro, neonatal mouse cardiomyocytes (NMCMs) were subjected to Dox and treated with BM-MSC-EXOs or iPSC-MSC-EXOs. The mitochondrial morphology and cellular senescence of NMCMs were examined by Mitotracker staining and senescence-associated-ß-galactosidase assay, respectively. Compared with BM-MSC-EXOs, mice treated with iPSC-MSC-EXOs displayed improved cardiac function and decreased cardiomyocyte mitochondrial fragmentation and senescence. In vitro, iPSC-MSC-EXOs were superior to BM-MSC-EXOs in attenuation of cardiomyocyte mitochondrial fragmentation and senescence caused by DOX. MicroRNA sequencing revealed a higher level of miR-9-5p in iPSC-MSC-EXOs than BM-MSC-EXOs. Mechanistically, iPSC-MSC-EXOs transported miR-9-5p into DOX-treated cardiomyocytes, thereby suppressing cardiomyocyte mitochondrial fragmentation and senescence via regulation of the VPO1/ERK signal pathway. These protective effects and cardioprotection against DIC were largely reversed by knockdown of miR-9-5p in iPSC-MSC-EXOs. Our results showed that miR-9-5p transferred by iPSC-MSC-EXOs protected against DIC by alleviating cardiomyocyte senescence via inhibition of the VPO1/ERK pathway. This study offers new insight into the application of iPSC-MSC-EXOs as a novel therapeutic strategy for DIC treatment.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cardiomiopatías/inducido químicamente , Transducción de Señal , Doxorrubicina
17.
Technol Cancer Res Treat ; 23: 15330338241239188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38634139

RESUMEN

Globally, hepatic cancer ranks fourth in terms of cancer-related mortality and is the sixth most frequent kind of cancer. Around 80% of liver cancers are hepatocellular carcinomas (HCC), which are the leading cause of cancer death. It is well known that HCC may develop resistance to the available chemotherapy treatments very fast. One of the biggest obstacles in providing cancer patients with appropriate care is drug resistance. According to reports, more than 90% of cancer-specific fatalities are caused by treatment resistance. By binding to the 3'-untranslated region of target messenger RNAs (mRNAs), microRNAs (miRNAs), a group of noncoding RNAs which are around 17 to 25 nucleotides long, regulate target gene expression. Moreover, they play role in the control of signaling pathways, cell proliferation, and cell death. As a result, miRNAs play an important role in the microenvironment of HCC by changing immune phenotypes, hypoxic conditions, and acidification, as well as angiogenesis and extracellular matrix components. Moreover, changes in miRNA levels in HCC can effectively resist cancer cells to chemotherapy by affecting various cellular processes such as autophagy, apoptosis, and membrane transporter activity. In the current work, we narratively reviewed the role of miRNAs in HCC, with a special focus on tumor microenvironment and drug resistance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , MicroARNs/genética , Microambiente Tumoral , Resistencia a Medicamentos , Regulación Neoplásica de la Expresión Génica
18.
PLoS One ; 19(4): e0301995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635539

RESUMEN

Breast cancer (BC) is the most common cancer among women with high morbidity and mortality. Therefore, new research is still needed for biomarker detection. GSE101124 and GSE182471 datasets were obtained from the Gene Expression Omnibus (GEO) database to evaluate differentially expressed circular RNAs (circRNAs). The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases were used to identify the significantly dysregulated microRNAs (miRNAs) and genes considering the Prediction Analysis of Microarray classification (PAM50). The circRNA-miRNA-mRNA relationship was investigated using the Cancer-Specific CircRNA, miRDB, miRTarBase, and miRWalk databases. The circRNA-miRNA-mRNA regulatory network was annotated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. The protein-protein interaction network was constructed by the STRING database and visualized by the Cytoscape tool. Then, raw miRNA data and genes were filtered using some selection criteria according to a specific expression level in PAM50 subgroups. A bottleneck method was utilized to obtain highly interacted hub genes using cytoHubba Cytoscape plugin. The Disease-Free Survival and Overall Survival analysis were performed for these hub genes, which are detected within the miRNA and circRNA axis in our study. We identified three circRNAs, three miRNAs, and eighteen candidate target genes that may play an important role in BC. In addition, it has been determined that these molecules can be useful in the classification of BC, especially in determining the basal-like breast cancer (BLBC) subtype. We conclude that hsa_circ_0000515/miR-486-5p/SDC1 axis may be an important biomarker candidate in distinguishing patients in the BLBC subgroup of BC.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , ARN Circular/genética , Neoplasias de la Mama/genética , MicroARNs/genética , Biología Computacional , Biomarcadores , Redes Reguladoras de Genes
19.
PLoS One ; 19(4): e0296198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635644

RESUMEN

Robust prognostic and predictive factors for hepatocellular carcinoma, a leading cause of cancer-related deaths worldwide, have not yet been identified. Previous studies have identified potential HCC determinants such as genetic mutations, epigenetic alterations, and pathway dysregulation. However, the clinical significance of these molecular alterations remains elusive. MicroRNAs are major regulators of protein expression. MiRNA functions are frequently altered in cancer. In this study, we aimed to explore the prognostic value of differentially expressed miRNAs in HCC, to elucidate their associated pathways and their impact on treatment response. To this aim, bioinformatics techniques and clinical dataset analyses were employed to identify differentially expressed miRNAs in HCC compared to normal hepatic tissue. We validated known associations and identified a novel miRNA signature with potential prognostic significance. Our comprehensive analysis identified new miRNA-targeted pathways and showed that some of these protein coding genes predict HCC patients' response to the tyrosine kinase inhibitor sorafenib.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pronóstico , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica
20.
PLoS One ; 19(4): e0301356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635778

RESUMEN

BACKGROUND: CircTADA2A has been demonstrated to play critical roles in the occurrence and development of human cancer. However, the expression pattern and biological mechanisms of circTADA2A in melanoma remains largely unknown. METHODS: CircTADA2A were detected by quantitative real-time RT-PCR (qRT-PCR) and validated by Sanger sequencing. Function of circTADA2A and its protein partner in melanoma cells was investigated using RNA interference and overexpression assays. Interaction of circTADA2A, CCHC-type zinc finger nucleic acid binding protein (CNBP) and solute carrier family 38 member 1 (SLC38A1) was confirmed by RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay. The expression of genes and proteins were detected by qRT-PCR and western blot assays. RESULTS: Data from the investigation showed that a novel circRNA (circTADA2A, hsa_circ_0043278) was markedly downregulated in melanoma cells. Functionally, circTADA2A repressed cell proliferation, migration, invasion in melanoma cells. Mechanistically, circTADA2A interacted with CNBP, acting to suppress the binding of CNBP to the SLC38A1 promoter and subsequently restrained SLC38A1 transcription, which resulting in repression of melanoma progression. CONCLUSIONS: CircTADA2A suppresses melanoma progression by regulating CNBP/SLC38A1 axis, indicating a potential therapeutic target in melanoma.


Asunto(s)
Melanoma , MicroARNs , Humanos , Melanoma/genética , Melanoma/metabolismo , ARN/genética , Interferencia de ARN , ARN Circular/genética , MicroARNs/genética , Proliferación Celular/genética , Movimiento Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...